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1. INTRODUCTION

The empirical characterization of linear time-invariant (LTI) systems is a subject that

is well-established in the technical literature. The use of deterministic functions (e.g., unit

impulse functions, unit step functions, and controlled sinusoids) for the characterization of

LTI systems is intimately related to concepts governing the analytical characterization of

these systems (e.g., the unit impulse response, the unit step response, and the system

frequency response). The use of non-deterministic signals for the characterization of LTI

systems is intimately related to concepts governing the analytical characterization of

stationary random processes (e.g., covariance functions and the power spectrum). In

either case, the empirical characterization of LTI systems proceeds amid a framework of

familiar analytical concepts.

The analytical characterization of linear time-varying (LTV) systems is also well-

established in the technical literature. Appropriate extensions of concepts governing the

analysis of time-invariant systems provide useful insight into the behavior of systems with

known time-varying parameters. The empirical characterization of continuous-time LTV

systems has received some attention in the technical literature, but the subtleties of applying

these techniques to discrete-time LTV systems and their practical limitations have not been

discussed.

The objective of the following work is the application of techniques for empirically

characterizing discrete-time linear periodically time-varying (LPTV) systems. Specifically,
we wish to characterize certain LPTV structures found in multi-rate quadrature samping

and quadrature demodulation systems (see Baugh, 1988). Chapter 2 presents methods for

the analysis of LTV systems in both the time domain and in the frequency domain. These

analytical methods rely on the concepts of the time-varying system response function and

the system transmission function (see Zadeh, 1961, Zadeh and Desoer, 1963, D'Angelo,

1970, Claasen and Mecklenbrauker, 1982, and Crochiere and Rabiner, 1983). Chapter 3
presents a discussion of the analysis of random processes generated by LTV systems. The

evolutionary spectral repre:entation of a nonstationary signal and its relation to the

underlying LTV system model is presented. Techniques for the empirical characterization

of discrete-time LPTV systems are presented in Chapter 4. These techniques are presented

within the framework of concepts for the analytical characterization of LPTV and the

signals produced by such systems discussed previously. The limitations of application of

these empirical techniques in practice are also presented. The results of applying these

techniques to LVI'V systems of interest are presented in Chapter 5.



2. REVIEW OF THE THEORY OF DISCRETE-TIME LINEAR TIME-
VARYING SYSTEMS

The theory and analysis of discrete and continuous time linear time-varying (LTV)

systems has been the subject of research for some time (see Zadeh, 1961, Zadeh and

Desoer, 1963, D'Angelo, 1970, Claasen and Mecklenbrauker, 1982, arid Crochiere and

Rabiner, 1983). Characterizations of such systems in both the time domain using the

concept of the time-varying system response function and in the frequency domain using

various concepts related to the system response function have been proposed. In this

chapter, we will review some of these concepts for the characterization of discrete-time

LTV systems. For a more thorough treatment of the subject, see D'Angelo, 1970,

Crochiere and Rabiner, 1983, and Zadeh and Desoer, 1963.

2.1 TIME-DOMAIN REPRESENTATIONS OF LINEAR TIME-VARYING
SYSTEMS

A discrete-time linear time-varying system may be described mathematically as a

linear mapping of input signals, x(t), to output signals, y(t), so that

Ltfx(t) = y(t) . (2.1.1)

The operator L[ ] has the property of linearity; that is, if

Ltxi(t)] = y1(t) (2.1.2)

and

LtI x2(t) = y2(t) , (2.1.3)

then

l=tU Ux I()+yix2(t)] I Uy l(t) + 13y2(t) (2.1.4)

for any scalar (x and 1. However, since the operator [4 I evolves over time,

lt{ x(t+t) I y(t+T) (2.1.5)

-3



One suitable form for the operator Lt[ ] is the discrete-time superposition sum

00

y(t) = k(t,t) x(t) , (2.1.6)

where the function k(tt) is the system response function, or Green's function (see

D'Angelo, 1970, pp. 63-65). In one sense, the system response function characterizes the

response of the system at some time, t, to an input applied at time 't. The system can also

be described in terms of a time-varying impulse response, h(t,k), as

y(t) = h(t,k) x(t-k) (2.1.7)

The time-varying impulse response can be thought of as the response of the system at time t

due to an input signal applied k samples earlier. The system response and the time-varying

impulse response are related by

kW,xt) = h(t,t-,t) . (2.1.8)

In the discussions which follow, we will concern ourselves primarily with the

system response function, k(t,t). This choice will facilitate our presentation of

characterization techniques for multirate discrete-time systems (e.g., decimators and

interpolators). In these systems, the input and output sampling rates are not the same. Use

of the time-varying impulse response function, h(t,.), could lead to ambiguities in the

characterization of multirate systems since it is not clear what is meant by "the response of

the system at time t due to an input signal applied X samples earlier."

2.2 STABILITY CONSIJ)ERATIONS FOR LINEAR TIME-VARYING
SYSTEMS

It is rclatively ,traightforward to show that the system is Bounded Input - Bounded

OuLtput (131130) stable for eatih t it

Ik(t,T)l < o(2.2.1)



for each t. First, assume that k(tt) is absolutely summable over -t for each t and that we

apply some bounded input, x(r), such that

Ix(T)l < X < , (2.2.2)

for all t. It then follows that

Iy(tl = I k(t,,t) x(t)l < Ik(t,,t) x(t)l , (2.2.3)

Or

ly(t)l < x l k(tjx)l < ,(2.2.4)

Now assume k(tj) is not absolutely surnmable over all t for some t, and define

x(T) = sgn (k(tt)) (2.2.5)

for that particular t. We have introduced the function

sgny = ;= +1 > 0 (2.2.6)

Notice that x(t) is a bounded function for all t. The system output corresponding to this

input is given by

y(t) k(tt) sgn(k(tt)) Ik(tT)l (2.2.7)

vhiich, by assuniption, is unbounded.

I lercaftcr, we will assume that the Systems of interest arc BIBO stable for all t; in

other words



Z Ik(t,-T)l <cc (2.2.8)
= -,,

holds for all t We make this assumption for two reasons. First, a detailed study of criteria

for the stability of LTV systems is beyond the scope of the present effort. Second, by

making this reasonable assumption on the systems of interest, we obtain interesting and

useful results when we consider frequency-domain techniques for characterizing LTV

systems. For a more detailed discussion of stability issues for LTV systems, see

D'Angelo, 1970, pp. 221-272.

Notice also that equation (2.2.8) implies

lin lk(t,r) = 0 (2.2.9)
T -..-- - .,o

so that the contribution to the system output at sample time t due to an input at some sanple

time 't in the remote past is negligible. In a sense, then, a BIBO stable system can be said

to possess limited memory (see Zadeh and Desoer, 1963, pp. 45-46). This will prove

uscful to us when we consider the estimation of statistical parameters for random processes

produced by stable LTV systems.

2.3 FREQUENCY DOMAIN CHARACTERIZATIONS OF LINEAR TIME-
VARYING SYSTEMS

In order to introduce the concept of a frequency-domain characterization for LTV

systems, let us first consider the characterization of a LTI system in the frequency domain.

For the LTI system, the impulse response function does not vary with time, t, but is a

function only of the time difference, t--r (see Zadeh and Desoer, 1963, p. 154). The

superposition sum for the LTI system is tierefore given by

00

y(t) = h(t-'t) x('T) (2.3.1)

where h( ) is the ftmiliar LTI impulse response function (see Zadeh and Desoer, 1963,

p. 156). Assume that the input to the LTI system is a complex sinusoid of frequency cc; in

other words

6



x(t) = eIaT (2.3.2)

for -n _it < <it. The output of the LTI system due to this input signal is given by

00t

y(t)= h(t-T) e , (2.3.3)

or by a change of variables

yCt(t) = h(X) e- je (2.3.4)

Notice that

Ih(X) e- I = Ih(X)I (2.3.5)

for all values of cc, so for a BIBO stable LTI system the summation enclosed in brackets in

equation (2.3.5) above converges uniformly to a function which is continuous in 0a by the

Weierstrass M-test (see Kaplan, 1962, p. 169). Let

H(cc)= h(k) e (2.3.6)

so that the response of the LTI system due to a complex sinusoid of frequency aX is given

by

yU (t)= l(e (2.3.7)

'hc function H( is referred to as the frequency response function of the LTI system (see

Kaplan, 1962, pp. 95-06). Notice that in some sense the frequency response function

indicates how frequency components of the input signal are mapped into frequency

componcnts of the output signal.

7



Now consider a deterministic input signal, x(,t), whose Fourier transform exists

and assume that the Fourier transform of the output signal, defined by

00V-iojft
Y(W)= y(t) e (2.3.8)

t-00

exists. Substituting for y(t) in (2.3.8) above yields

00 00

Y(W) = E h(t-,t) x(,t) e , (2.3.9)
t = - 0'r =

or by a change of variables, and assuming the system is BIBO stable

Y(CU) = x(xc) e h(k) e- (2.3.10)
T = - , .= -

so that, since the Fourier transform of the input, x(t), exists

Y(o) = X(w) H(o) (2.3.11)

(see Priestly, 1981, p. 210).

Equation (2.3.11) presents one of the fundamental concepts of the theory of

frequency-domain characterizations for LTI systems: a Fourier transform can represent a

linear convolution of series in the time domain by a simple product of functions in the

frequency domain. For this reason, a Fourier transform is said to be a compatible

transform for the class of LTI systems (see D'Angelo, 1970, pp. 275-276). One early

approach to the frequency-domain characterization of LTV systems was based on the idea

of defining new transforms which would be compatible transforms over some restricted

class of LTV systems (see Aseltine, 1954, and Johnson and Kilmer, 1962). For example,

the Mellin transform defined by

8



Y ) y(t) t '- dt (2.3.12)

is a compatible transform for continuous LTV systems governed by the Euler-Cauchy

differential equation (see Aseltine, 1954). One obvious shortcoming to this approach is

that specific compatible transforms must be developed for each specific class of LTV

system, depending on the time-varying differential equation governing that class of

systems. Also, the familiar notion of "frequency" can be lost in the new compatible

transform domain. For example, it is not obvious how the parameter L.t in the Mellin

transform of equation (2.3.12) above can be related to some familiar notion of "frequency"

for the signal y(t).

An alternative approach, introduced in Zadeh, 1950, and presented for continuous-

time LTV systems in Zadeh, 1961, Gersho, 1963, and Brikker, 1966, and presented for

discrete-time LTV systems in Claasen and Mecklenbrauker, 1982, and Crochiere and

Rabiner, 1983, pp. 100-126, is based on the idea of using an incompatible transform to

obtain a characterization of the LTV system. This incompatible transform retains the

concept of "frequency" of the input and output signals. In order to introduce this concept,

we first consider applying a complex sinusoidal input of frequency a to a LTV system. Let

the response of the LTV system due to this sinusoidal input be denoted as k(t,a). By

equation (2.1.6), k(t,ca) is given by

00

K(t,ct) = k(t,t) e (2.3.13)
'C = -

If the LTV system is BIBO stable for all t, then

Ik(tt)l < (2.3.14)
,t = -- o,

for all t, and since

Ik(t,t) e"it = Ik(t,T)l (2.3.15)

9



for all t, by the Weierstrass M-test K(t,ot) exists and is continuous in ot for all t (see

Kaplan, 1962, p. 169). Note that i(t,ot) is simply the response of the LTV system to an

applied complex sinusoid of frequency at. We could therefore refer to iK(t,co) as the time-

varying frequency response function for the LTV system. If the system were time-

invariant, we know from equation (2.3.7) that this response function would be a scaled

version of the original complex sinusoid. In Zadeh, 1950, the time-varying system

function, H(t,cx), for a LTV system is defined to be

-i~tt
H(t,ot) = K(t,ot) e (2.3.16)

In a sense, the time-varying system function is the complex envelope of the response of the

LTV system to an applied complex sinusoid (see Zadeh, 1950).

Now consider a signal, x(,t), whose Fourier transform exists; in other words,

~- iat

X(oC) = x(r) e (2.3.17)
.t = -oo

exists. We could therefore describe the signal x('t) as

7t
I C ~o it

x() f X(a) e'c d . (2.3.18)

Applying this signal to the LTV system of equation (2.1.6) yields an output signal, y(t),

given by

YM k(t,z) f X(ci) e i da (2.3.19)

Interchanging the order of sumnmtion and integration yields

f I 'ICxT
y _ k(t,t) e X(0x do . (2.3.20)

10



Notice that the term in brackets in equation (2.3.20) above is the time-varying frequency

response function, ic(t,ot). Equation (2.3.20) may therefore be rewritten as

1r
y(t) = i--j. c(t,c) X(t) dt . (2.3.21)

2-It

Now assume that the Fourier transform of the output signal, y(t), exists; in other words

00

Y(W) = y(t) e (2.3.22)

exists. Substituting equation (2.3.21) into (2.3.22) above yields

Y(W) =2n (t,o) X(ot) dae (2.3.23)

Interchanging the order of summation and integration, we obtain

.1* / .- iw~t
Y(L) K(t,ca) e X(cc) dx (2.3.24)

For the moment, assume that the summation in brackets in equation (2.3.24) above exists,

and define

K ((o,ot) = (t,(X) e- ~ (2.3.25)

Conditions for the existence of K(w,ot) and the implications of these conditions will be

examined in Section 2.5. Substituting equation (2.3.25) into equation (2.3.24) we obtain

Y(W) J K((o,o) X(t) dx (2.3.26)Y~o ) = 2

I1



Notice that equation (2.3.26) in some sense gives a description of how input frequency

components contribute to output frequency components. It is not the simple one-to-one

relationship one finds for LTI systems, and it is for this reason that this characterization of

LTV systems is considered to be an incompatible transform technique (see D'Angelo,

1970, p. 294). The function K(o),cc) is referred to as the time-varying system

transmission function (see Claasen and Mecklenbrauker, 1982, and Crochiere and Rabiner,

1983, p. 103).

2.4 ANALYSIS OF NETWORK STRUCTURES FOR DISCRETE-T!ME
LINEAR TIME-VARYING SYSTEMS

We have introduced time and frequency-domain representations for discrete-time

LTV systems in the previous sections. In this section, we consider the analysis of network

structures obtained by connecting LTV subsystems. Two fundamental structures will be

considered: the parallel connection of two LTV subsystems, and the series connection of

two LTV subsystems. More complicated network structures may be analyzed by extension

of the methods presented below.

Consider two LTV systems with response functions kl(t,t ) and k2(t,T). Assume

that the corresponding transmission functions, KI(w,(x) and K2 (o,c), exist for these two

systems. A parallel connection of the systems is indicated schematically in Figure 2.4.1.

The response of the overall system to some input signal, x(t), is

y(t) = K (tj)x(T) (t, r) xJ(K) (2.4.1)
T = - 1+ =---

If we were to apply a unit impulse function at some time -t = To to this composite system,

the observed output would be the response function for the overall LTV system for the

fixed input time T = To , k(tro). Lct the unit impulse function be denoted by (t); in other

words define

[0 • "t 0 (2.4.2)
[0 T 0

The response function for the overall system is given by
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k =o KI ki(t,'t) (T-ro)j+ X tt(-oj.(2.4.3)

Simplifying this expression we obtain

k(t,T0 ) = k1 (t, 0 ) + k2 (t,To) ;(2.4.4)

in other words, the response function of a parallel connection of LTV systems is simply the

sum of the individual response functions. Also note that if k;(t,,t) and k2 (t,'T) represent

BIBO stable LTV systems, then the overall LTV system is also BIBO stable.

Next consider applying a complex sinusoid ot frequency ct to the composite system

of Figure 2.4. 1. We know that the output of the composite system for this input will be

the frequency response function for the overall system at frequency (X, K(t,aX). From

equation (2.4. 1) we may express K(t,cc) as

K(tCI) = k(t,r) e + ~ k 2 (t,T) e (2.4.5)

Simplifying this expression, we obtain

K(t,(1) = K 1(t,(X) + K2(t,CX) , (2.4.6)

where KI(t,(X) and K2t()are the frequency response functions corresponding to k1 (t,'r)

and k(tT). From equation (2.3.25) we can express the transmission function of the

overall system, K~~) as

= ),a (K 1A( ) + K-)(t.(x) (2.4.7)
t = -,

Simnplify'in g this expression wve obtainl

Kt.x =KI(ow+ IK-(to.x) ,(t2.4.8)



where K1(w,at) and K2(c,a) are the transmission functions corresponding to k 1(tj) and
k2(t,'t). From equation (2 4.8) we see that the transmission function for a parallel

connection of LTV systems is simply the sum of the individual transmission functions.

Finally, consider the series connection of LTV systems indicated schematically in
Figure 2.4.2. The response of the overall system to some input signal, x(t), is given by

y(t)= k2(t,Y')yl(y) (2.4.9)

where

yI(Y)= k1(y,T)x(t) . (2.4.10)

Combining equations (2.4.9) and (2.4.10), we obtain

y(t)= k2 (t,y) ,(y,T)x(t , (2.4.11)

or simply

y(t) k2(t.,y) kl(y,T) 1 x) . (2.4.12)

If we apply a unit impulse at time T = To to this composite system, we obtain the overall

system response function for input time T = To , k(t,To). From equation (2.4.12), we
may express k(tt o ) as

k (tto = k 2 (t,y) kI(y,T) j(T-to) , (2.4.13)

14



or simply

00

k(tjo) = X k 2(t,y) ki(y, ro) (2.4.14)

Equation (2.4.14) indicates that the overall system response function at input time 't =,to
for a series connection of two LTV systems is the response of the second LTV system

when excited by the first LTV system's response function, kl(y,to). Notice that, in

general, a different response function (and therefore a different LTV system) is obtained

when we commute the systems k 1(tt) and k2(t,t) (see Crochiere and Rabiner, 1983,

pp. 108-112). Also note that if both ki(t,-t) and k2 (t,t) are BIBO stable LTV systems,

then the overall system is also BIBO stable.

Now consider applying a complex exponential of frequency x to the composite

LTV system of Figure 2.4.2. The output signal obtained in this case will be the frequency

response function for the overall system at frequency CC, K(t,a). From equation (2.4.12)

we may express K(t,0a) as

K(t,cL) = k 2 (t,y) kI(y,T) e (2.4.15)
T =--0 0 = -

On simplifying equation (2.4.15), we obtain

K(t,(X) = k2(t,y) KI(y,aC) . (2.4.16)
"Y = - €:

Consider that we may express k2(t,y) as

7I

k2(t,y) = 2n1 I K2(t4,) ei Y d1, (2.4.17)
-it

so that equation (2.4.16) can be rewritten as

15



K(t,) f K2,P) XKI(y,X) e J d3 . (2.4.18)

Notice that the expression in brackets in equation (2.4.18) above is the transmission

function for the first LTV system, KI(w,a). Our expression for x(t,a) therefore becomes

It

K(ta) f K2(t3) KI(3,cx) do . (2.4.19)

Using equation (2.3.25) to obtain the transmission function for the overall LTV system,

K(w), we obtain

K(w,oc) = 2 ,2(tj) Kl(pcz) do e (2.4.20)

or simply

K(1ox) = J K 2 (w,p3) K1 (3,ci) do (2.4.21)
-It

Recall that, in some sense, KI(ojo) indicates the distribution of frequency components in

the output of the first LTV system due to a complex exponential input signal of frequency

ox. Comparing equation (2.4.21) and (2.3.26), we see that the overall system's

transmission function, K(0,, is simply the response of the second LTV system due to a

signal with frequency content K1 (3,ct). Again, note that in general commuting the two

LTV systems yields an overall LTV system with a different transmission function (see

Crochiere and Rabiner, 1983, p. 111).
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X~t (9t) -) t, so y(r)

AS-9 1-365

FIGURE 2.4.2
SERIES CONNECTION OF LTV SYSTEMS
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2.5 CLASSES OF DISCRETE-TIME LINEAR TIME-VARYING SYSTEMS

The discussions of frequency-domain characterizations of LTV systems using the

system transmission function, K(c,a), presented thus far have been made by simply

assuming that K(co,a) exists. We now turn our attention to the conditions under which

K(w,ot) exists and the implications of these conditions on the properties of the LTV

system. Recall that the system transmission function was defined to be

-i0~

K(wo,o) = i(t,o) e .(2.5.1)

-o

Clearly, the existence of K(wo) intimately depends on the properties of the frequency

response function. K(t,a). We will consider two classes of LTV system: the class of LTV

systems whose frequency response function is a periodic function of t for all a, and the

class of LTV systems whose frequency response function is an almost periodic function of

t for all cc.

First assume that the frequency response function is a periodic function of output

time t for all a; in other words, assume

K(t,ox) = K(t+T(a),a) (2.5.2)

for some T(ox) for all cc. Notice that equation (2.5.2) assumes that the frequency response

function may be periodic with a distinct period, T(o), for each ox. Since K(t,ox) is a

periodic function in t, it has a Fourier series representation given by

K (t,a) an(a) c (2.5.3)
n= -00

,A here

S -i2rtnl/Tlt)

an(R) : (tWU) e (2.5.4)
t=O
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(see Oppenhiem and Schafer, 1975, pp. 88-89). Substituting equation (2.5.3) into

(2.5. 1), we obtain

K(om) I an(a) e i~nf~,e -i (2.5.5)

or simply

K(w,(x) = an(() e1 25.6)

The term in brackets in eqUation (2.5.6) is given by

where 6 0f) is the Dirac delta function (see Papoulis, 1962, pp. 42-46). Our expression

for KMw,ct) is therefore given by

K(wjcz) = an(U) 6(w-2nnF(cz)) .(2.5.8)

n = -cc

From equation (2.5.8 above we see that a LTV system whose frequency response

function is a periodic function of time twill possess a system transmission function which

consists of modulated Impulse sheets in the (wxx) bifrequency plane.

Finally, assume that the freqluency response function is an almost periodic function

Of outpUt time1 t for all (Y, in other words, for any v > 0, there is some T(W) such that

IKwtAX - 0( [+lT)X)Il < t (2.5.9)



for all a (see Wiener, 1933, p. 185). Since K(t,cx) is an almost periodic function for all a,

we know that there is an increasing sequence of frequencies,

{. .. *-l(a), w)0(a), w 1(a), .. , such that

:(t,oa an((x) ea°n c  ~ (2.5.10)

n=. -oo

where

to

an(a) lim I I c(t,a) e- (2.5.11)
to-* to t = -to

(see Wiener, 1933, p. 186 and Priestly, 1981, p. 199). Substituting equation (2.5.10)

into (2.5.1), we obtain

K(-,a) = an(ca e e , (2.5.12)
1= -00 n = -00

or simply

00

K(o,ct) = Z an(a) 6(o-0)n(a)) . (2.5.13)
n = -o~o

Again, we see that LTV systems which possess almost periodic frequency response

functions exhibit transmission functions consisting of modulated impulse functions in the

(0,oc) bifrequency plane.

In Claasen and Mecklenbrauker, 1982, the class of LTV systems with almost

periodic frequency response functions is referred to as the class of "stationary" LTV

systems. The authors then point out that, whereas series and parallel connections of LTV

systems with periodic frequency response functions may not yield overall LTV systems
with periodic frequency response functions, series and parallel connections of LTV

systems with almost periodic frequency response functions always yic!d overall LTV
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systems with almost periodic frequency response functions. In the discussions which

follow, we will refer to the class of LTV systems with almost periodic frequency response

functions as simply the class of linear periodically time varying (LPTV) systems.

2.6 IMPLICATIONS OF CAUSALITY ON THE TRANSMISSION
FUNCTION OF LINEAR PERIODICALLY TIME-VARYING
SYSTEMS

Recall from equation (2.5.13) that the system transmission function for a LPTV

system is given by

K(o,= X an(aX) 6(W-On(00) . (2.6.1)
n -o

The system transmission function is therefore non-zero only along the set of curves

o=on(c) in the (o,cx) bifrequency plane. In Claasen and Mecklenbrauker, 1982, it is

shown that for causal continuous-time LPTV systems, the system transmission function is

non-zero only along a set of lines in the bifrequency plane. It is then asserted that causal

discrete-time LPTV systems will similarly possess o(n(ct) which are linear in x. In this

section, we will show that causal LPTV systems whose input and output sampling rates are

rationally related do indeed have the property that the function wh(0a) is linear in cc.

First, consider a one-sided discrete-time signal, s(y); in other words, a sequence

for y = ... , -1, 0, 1, ... such that

s(7) = 0, .< 0 (2.6.2)

Assume that the Fourier transform of sky) exists and is given by

S(u) = s(y) e (2.6.3)
y=0

Now consider the real and imaginary components of S(Q), given by

S(Q) = SR() + iSi (2.6.4)
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For a one-sided signal, the real and imaginary components of S(Q) are related through a

discrete Hilbert transform (see Oppenheim and Schafer, 1975, pp. 339-345). Specifically,

the real and imaginary components of S(Q) are related by

71

SI(M) =- (p.v.) f SR(O) cot (0-0 dE (2.6.5)2n -nk7i

and

SR(Q) - ± (p.v.) f S(E) cot dO + s(0) . (2.6.6)

In equations (2.6.5) and (2.6.6), (p.v.) indicates the Cauchy principle value of the
integral. In one sense, the Hilbert transform is a circular convolution of two functions in

0, and so is itself a linear function in Q (see Oppenheim and Schafer, 1975, p. 345).

We must now define precisely what is meant by a causal LTV system. First,

assume that the input and output sampling times, t and t, can be related to some underlying

continuous time parameter, t. Specifically, we will assume that output samples are taken at

unit intervals in t, while input samples are obtained at intervals spaced p apart. This is
indicated schematically in Figure 2.6.1. By coupling input and output sampling times to

this underlying continuous parameter, we can make some sensible accounting of which

output samples occur after a given input sample. A LTV system with system response

function k(tt) is defined to be causal if

k(t,t) = 0, t < [prl . (2.6.7)

The notation [xI for some real-valued x indicates the smallest integer which is greater than

or equal to x. Notice that equation (2.6.8) indicates that observed outputs at time t depend

only on inputs applied at some earlier absolute time. Systems for which p = 1 will be

called constant-rate systems, since the input and output sampling rates are the same.

Systems for which p < 1 or p > I will be called rate-reduction and rate-increase systems,

respectively.
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Assume that k(t,,t) is the system response function for a causal, stable, constant-
rate LPTV system. From equations (2.3.13) and (2.3.25), we may express the system

transmission function as

V iet -iwrt
K(w,z) = I I k(tt) e e (2.6.8)

t = - 010 = -0O

Now consider that

K(0,w-ct) = k(t,-t) ei(wt e ,iwt (2.6.9)
t =-00 =- 00O

or

K(wo,co-c) = k(t,t) eik(t ) iaL (2.6.10)

Substituting 'y = t-'r, we obtain

KImkm-ot) e= ik+eiaT (2.6.11)

Define the sequence s(y,) to be

s(y,t) = k(y+T,t) , (2.6.12)

so that equation (2.6.11) becomes

K(w,(o-ct) = s(y,r) e (2.6.13)

23



The summation in brackets in equation (2.6.13) above is the Fourier transform of s(yj)
with respect to -y. However, from equation (2.6.10) we know that s(yjt) is a one-sided
sequence; in other words,

s(Y,T)= 0, Y<0 (2.6.14)

If we define

00

S((Or) = 1s(yjt) e" SR(0,'r) + iSI(CO,T) ,(2.6.15)

then we know that the real and imaginary components of S(&,t) are related by

SI(wO~r) = -(p.v.) f SR(E),T) Cot 2-) E (2.6.16)

and

SR(WJt) 2. ~ (p.v.) f S(8,T) cot (--d)+ k(,r) .(2.6.17)

Substituting equation (2.6.15) into equation (2.6.13) and simplifying, we obtain

00

K(Co,co-a) Z SR((ci,T) cos(aT) + SI(cO,'T) sin(cat)

SI(O),T) cos(aCT) - SR(W,T) sin(ccr) .(2.6.18)

From equation (2.6.18), we may write the real and imaginary components of the

transmission function as

00

KR(W,o,-CC) = I SR(xxT) COS(cur) + SI((O,t) sin(act) (2.6.19)
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and

KI(ca,0-a) = SI(O,) cos(at) - SR((O,') sin(at) , (2.6.20)

respectively. Now consider that

2n (p.v.) f KR(O,O-a) cot -2 d =
-nt

.2n0 -n -2

+ (p.v.) f SI(O,) cot (w Ejd@ sin(ctx), (2.6.21)
T 2- -I2

or, by equations (2.6.16) and (2.6.17),

(p.v.) f KR(E,E-O) cot O =

SSI(O,') COS(cur) - SR(Ot) sin(otr) + k(t,t) sin(atx) .(2.6.22)
T oo T = 0- 0

From equations (2.6.22) and (2.6.20), we obtain

it

Kj(oo-ox = (p.v.) KR(6,E)-a) cot dO - HO(ct), (2.6.23)

where

Ho(cc) = k(T,T) sin(cc ) , (2.6.24)

an odd function of (t. Proceeding in a similar fashion, we determine that
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KR(Ow-t) = - 2 (p.v.) f2K(e,0-) cot d@ + I-e(c), (2.6.25)

where

He(X) = _ k(rt) cos(ot) , (2.6.26)

an even function of (x. From equation (2.6.8), it is straightforward to show that

f J K(w,w-x) dw = He(cc) - flo(cc) (2.6.27)

It should also be noted that equations (2.6.23) through (2.6.27) hold for any causal,

constant-rate LTV system for which K(w,c) exists.

Consider equation (2.6.1) and note that we may express the real and imaginary
components of the transmission function as

00

KR(0,W-O) =I aRn(W-0) 6((D - (On(W-C)) (2.6.28)
n

= 
-o

and

K(w,w-a) ar(W-) 5(w - Wn(O0-O)) , (2.6.29)
n

= 
-oo

where aRn(L) and ain(CE) are the real and imaginary components of an(a). From

equation t2.6.23), we obtain
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o aln(.O--a) d(o - con(Ow-() =
n = -c

00

I 2- (P.V.) f aRn(E-ct) 8(O-Wn(-a)) cot €-dG - -Ho((a). (2.6.30)

Notice that the left-hand side of equation (2.6.30) is identically zero for all con(o-a),

which implies that the summation on the right-hand side of equation (2.6.30) is identically

zero for all ( # wn(o,-a). This will occur only if S(co-w)n((O-a)) is not a function of (o,

in other words only if o.n(cL) is a linear function of a. We can therefore express cOn(a) as

€on(a) = Oa -i on , (2.6.31)

where won is some initial offset for the n-th response curve. From equations (2.6.1),

(2.6.27), and (2.6.31), we obtain the relation

1 f. K(0w-,-a) d) = 1 An 8(a-Oon) (2.6.32)
2n _ n = -oo

where

An= ; an(P) dpJ (2.6.33)

so that

He(= ' ARn 6(0c-€oon) (2.6.34)
n -

and

l-to(O) = -Ain 6(ct-on) (2.6.35)
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where ARn and ARn are the real and imaginary components of An. To summarize, we have

seen that a causal, constant-rate LTV system with an almost periodic frequency response
function has a system transmission function given by

00

K(w,a) = I an(a) 8(w - a - Won) (2.6.36)
n = -

From equation (2.6.36) above we see that the transmission function for a causal, constant-

rate LPTV system is non-zero only along a set of lines with unit slope in the (0,o) plane.

The set of offset frequencies, won, in one sense can be interpreted as the response of the
LPTV system due to a constant unit input sequence and is therefore determined by x(t,O).

Now consider the case of a causal, integer rate-increase LPTV system, in other

words a system for which p = m, an integer. From equation (2.6.8), we have the

relation

K(r,mow-o) = k(t,t) e i(MW)T e , (2.6.37)
t -* 00 00

or by a change of variables

K(o,mc0-ot) = s(y,t) e e (2.6.38)

In equation (2.6.38), we have defined the one-sided sequence

s(y,t) = k(y+mt,t) = 0 , y < 0 . (2.6.39)

The term in brackets in equation (2.6.38) is the Fourier transform of s(y,,t) with respect to

y. so that the Hilbert transform relations of equations (2.6.16) and (2.6.17) still apply.

Proceeding along the same lines presented for the constant-rate system, we obtain
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Kj(o,moz-a) = 2X (p.v.) KR(O,m0-a) cot d0 - Ho(a), (2.6.40)

-mI

where

00

He(x) I k(mt,t) sin(at) . (2.6.41)
-00

and

7-I2nn

n -n -2 
)

where

He(a) =k(mr,tr) cos(at) .(2.6.43)

Furthermore, it is straightforward to show that

and

2n9

It is appropriate to note that equations (2.6.40) through (2.6.44) apply for any causal,

in teger-rate- increase LTV system for which K(o,a) exists.

From equation (2.6. 1), we may write the real and imaginary components of

K(w),mw9+a) as

KR(W,mwO-a) = a~n(m(O-) 8(w - wOn(m(O-a)) (2.6.45)

and

29



K=wmwa aln(mw-a) 8(wo - czn(mw-oc)) ,(2.6.46)

n 00

where aRn(ax) and ain(cc) are the real and imaginary components of an(a). From

equation (2.6.40), we obtain

00

I ain(m~t-a) 6((0 - ((mo'-a))=

00n

S(P.v.) f aRf(mE)-a)8(E)-(O(m@-a))cot (W2-}E)E - H0(cx) . (2.6.47)

We can again argue that the only way that both sides of equation (2.6.47) above can be
zero for W * Wn(mQo-a) is for 8(w - w,,(mw-a)) to be independent of (o. This is the

case only if (oX(ax) is a livr - function such that

On( + Wn(2.6.48)m

where won is some initial offset for the n-th response curve. From equations (2.6.1),
(2.(144), and (2.6.48) we obtain

It 0

It m

where

An f a.(P) do (2.6.50)

so that

Ht)ARfl6(C-w~on) (2.6.51)
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and

00

H 1(cX) I Ain 6( -on) , (2.6.52)
n = -o~o

where ARn and Ain are the real and imaginary components of An. To summarize, we have

seen that a causal, integer-rate-increase LPTV system has a system transmission function

given by

C0

K(w,oc) = an(Ot) 8(o - - con) (2.6.53)m
n= -00

From equation (2.6.53) above we see that the transmission function for a causal, integer-

rate-increase LPTV system is non-zero only along a set of lines with slope 1/m in the (o,c)

plane. Again, the set of offset frequencies, won, may be determined from K(t,O), the

response of the system to a constant unit input sequence.

Finally, assume that k(t,,t) represents a causal, stable LPTV system whose input

and output sampling rates are rationally related, in other words p = m/n for some integer m

and n. For the moment, consider that we could rewrite equation (2.6.8) as

K(w,ot) = k(t,ny+j) e iQ(ny+j) e -i . (2.6.54)
j= 0  y=- t-

Now, for j = 0, 1,..... n-1. define

tj= njn (2.6.55)

so that, for 1 = t - tj , equation (2.6.54) can be rewritten as

n-I ict(ny+j) -iw(j 3 +tj)
K(Oxct) = > kt+tj, ny+j) e e (2.6.56)

j = 0 _= ,3_ 00

Rearranging terms in equation (2.6.56), we obtain
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K (o,J) e e e (2.6.57)

where we have defined the function

j(P,) = k(b+tj, ny+j) . (2.6.58)

A great deal of insight into the behavior of the system represented by l j(p,y) can be

obtained by a careful scrutiny of equation (2.6.58). First, consider that for each j, j(P3,y)

is the system response function for a stable LPTV system. Stability is obtained from the

fact that

00
j.I j(Py)j (2.6.59)

is a subseries of

00

Ik([3 )[ ,(2.6.60)

which converges for each P. Similarly, it is straightforward to show that, since

I I k(tt:) e'a e- (2.6.61)
tk 2k t

exists for some set of On(a),

lim I .(J3,') e ey -i( 3 (2.6.62)
to---o  2to = __ = -_

also exists for tle same set of On(a). Finally, consider that

-j(Py) = 0 for all 3 < my • (2.6.63)

in other words, k,(Oy) is a causal, integer-rate-increase system.

The double summation in equation (2.6.57) above is recognized as the system

transmission function corresponding to kj([,y), denoted K,(o,noJ. We therefore obtain
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n-I

K(o),) = Kj(w,nct) e i  
* e (2.6.64)

j-0

From the discussion of intege. -rate-increase LPTV systems presented above, we know that

AKj(oE) is non-zero only along a set of lines defined by

() -WCon (2.6.65)
m

From equation (2.6.62), we know that the Won are the same for each integer-rate-increase

system since Won = On(O). By inspection of equation (2.6.64), we may therefore

conclude that the system transmission function for the m/n rational-rate system is non-zero

only along the set of lines defined by

(n + Won (2.6.66)
m

Again, the set of offset frequencies may be obtained by evaluating the response of the

system to a constant unit input sequence.
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2.7 CHAPTER SUMMARY

In this chapter, we have presented some of the fundamental concepts of the analysis

of linear, discrete-time time-varying systems. Both time-domain and frequency-domain

characterizations of discrete-time LTV systems have been presented. The implications of

stability and causality for LTV systems have been discussed, along with a presentation of

the analysis of LTV network structures. The discussion of classes of LTV systems will

prove valuable to us when we begin to consider modeling discrete-time nonstationary

random processes using LTV systems.
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3. MODELING AND FREQUENCY-DOMAIN ANALYSIS OF
NONSTATIONARY RANDOM PROCESSES VIA

LINEAR TIME-VARYING SYSTEMS

The use of linear time-invariant system models has proven very useful in the
analysis of stationary random processes. In general, one may assume an observed wide-

sense stationary random process is the output of a LTI system excited by a purely random

or white noise process (see Koopmans, 1974, pp. 233-238). Frequency-domain

characterizations of the underlying system model yield insight into the spectral content of

the observed random process (see Priestley, 1981, pp. 267-268). Time-domain
characterizations for the underlying system model can be used to predict values of the
observed random process or to filter the random process in some optimum sense (see

Koopmans, 1974, np. 212-217).

In a similar fashion, linear time-varying system models are useful in the analysis of
nonstationary random processes. In this chapter, we will discuss modeling a nonstationary

random process as the output of a LTV system excited by a white noise process. Spectral
representations of the nonstationary random process which can be derived from the

frequency-domain characterization of the underlying system model will then be presented.
A discussion of the implications of the properties of the observed random process on the

characteristics of the underlying LTV system model is presented, with particular attention
paid to almost cyclostationary random processes. Finally, the characterization of certain
classes of nonstationary random processes via the spectral correlation function is presented.

For a more thorough treatment of these topics, see Priestly, 1981, pp. 817-866, and

Gardner, 1986, pp. 301-359.

3.1 LINEAR TIME-VARYING SYSTEM MODELS FOR
NONSTATIONARY RANDOM PROCESSES

In order to introduce the concept of a LTV system model for nonstationary random

processes, we first review the notion of a LTI system model for stationary random

processes. Let (y(t)) be a wide-sense stationary discrete-time random process such that

Ely(t)] = 0 (3.1.1)

and
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E[ I y(t)12 2 2 < 00 (3.1.2)

By the Wold decomposition theorem (see Koopmans, 1974, pp. 255-256), we know that

{y(t)) can be expressed as

y(t) = WOt) + v(t) (3.1.3)

where the processes {pl(t)) and {v(t)) are uncorrelated zero-mean wide-sense stationary

discrete-time random processes with the following properties:

(i) I g(t)} can be represented as the output of a LTI filter excited

by a wide-sense stationary, zero-mean purely random (i.e.,

white noise) process. In other words,

WO(t) = h(t-X) F(X) (3.1.4)

where

E[E(Xl)E*(X2)] = G 2(, 1-X2 ) . (3.1.5)

Furthermore, the LTI system represented by h(X) is causal,

and has the property

I h(k) 12 < (3.1.6)

(ii) The process (v(t)} is purely deterministic, in other words

the present value of {v(t)} may be completely determined by

linear functions of its past values.

For the moment, we will consider the case when the detemuinistic component of (y(t)} is

not present, in other words assume v(t) = 0 for each t. We make this assumption without

loss of generality since, from property (ii) above we could make a prediction for n(l) from
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past obscrvations of the process (y(t)} and remove this deterministic component from

(y(t)). We may therefore without loss of generality express (y(t)} as

00

y(t) = h(t-X) X) . (3.1.7)
00

An extension of the Wold decomposition theory for nonstationary discrete-time

random processes is given in Cramer, 1961. Again assume that {y(t)) is a discrete-time

random process satisfying

E[y(t)] = 0 (3.1.8)

and

E[ I y(t) 12 ] <oo (3.1.9)

for each t, but now assume (y(t)) is nonstationary. We can then express y(t) as

y(t) = gt(t) + v(t) (3.1.10)

where the processes {pt(t)) and {v(t)} are uncorrelated zero-mean discrete-time random

processes with the following properties:

(i) {i(t)) can be represented as the output of a LTV filter

excited by a wide-sense stationary, zero-mean purely
random process. In other words,

00

t = -00

where

Elv'Ej)c*(T.)) = 0 2  (TI-TD3 (3.1.12)
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Furthermore, the LTV system represented by k(t,t) is

causal, and has the property

Y I k(tt) 12 <oo (3.1.13)
r=-00

(ii) The process {v(t)) is purely deterministic; in other words,

the present value of I v(t) I may be completely determined by

linear functions of its past values.

Consider that, since v(t) is purely deterministic, we can predict its current value from past

observations of y(t) and so remove its contribution from the observed random process. We
may therefore without loss of generality restrict our attention to nonstationary random

processes of the form

00

y(t) = I k(tt) e(r) . (3.1.14)
= - 00

Note that equation (3.1.13) does not ensure BIBO stability for the LTV system for

each t. However, from the theory of Fourier series (see Koopmans, 1974, pp. 19-21) we
know that equation (3.1.13) holds if there exists some function ic(t,ot), periodic in a with

period 2r, which is continuous for almost all oc such that

icu'T
K(tcL) = k(t,,t) e (3.1.15)

T= -0

Furthermore, we have the relationship

2 f I =(ta)12 da I k(tt)12  (3.1.16)

for each t (see Koopmans, 1974, p. 20). We will make use of the fact that the frequency
response function for the LTV system model exists when we consider frequency-domain

representations of nonstationary random processes.
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Notice that equation (3.1.13) ensures that the LTV system model will exhibit

limited memory, as discussed in Section 2.2. In other words, the contribution to some

present value of {y(t)) due to an input in the remote past is negligible. Causality of the

LTV system model guarantees that {y(t)} does not depend on future values of the input.
We may therefore argue that input values contributing significantly to ty(t)} at some
present time are distinct from those input values contributing significantly to {y(t)) in the
remote past. If we further assume that the {c:(t)) are independent and identically

distributed, then wc may make a mixing assumption for (y(t)), i.e., present values of
(y(t)) are virtually independent of values of (y(t)} in the remote past. This mixing

assumption for (y(t)} will ensure that appropriate statistical averages involving fy(t)) are

asymptotically convergent (see Billingsley, 1968, pp. 166-167).

3.2 SPECTRAL REPRESENTATIONS FOR NONSTATIONARY RANDOM
PROCESSES

Assume {y(t)} is a nonstationary, discrete-time random process satisfying

E[y(t)] = 0 (3.2.1)

and

E[ Iy(t)I ] < . (3.2.2)

By the discussion presented in the previous section, we know that y(t) can be represented

as

y(t) k(t,-t) E(,r) (3.2.3)
T= 00

where c(r) is a zero-mean, wide-sense stationary, purely random discrete-time process with

variance o From the theory of spectral representations for wide-sense stationary random

processes. we know that (E(t)} can be represented as

C(-T)c~t dZ((x) (3.2.4)It

2i) St -
-It
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where (Z(ci)) is a zero-mean complex-valued random process over (-it,it) with orthogonal

increments; in other words,

2
E[dZ(xl)dZ*(Ct 2)] = 2iro2 8(ctl-Oa2) dx 1 doa2  (3.2.5)

(see Priestley, 1981, pp. 250-251).

Now consider substituting the spectral representation for E('t) given by

equation (3.2.4) into the LTV system model for y(t) given by equation (3.2.3). Our

expression for y(t) then becomes

y(t) = k(tjx) fe I dZ(a) .(3.2.6)

Interchanging the order of summation and integration in equation (3.2.6) above, we obtain

r -iat

yt f k(t,t) e dZ(.) (3.2.7)
2nt _n00

Note that the summation in brackets in (3.2.7) above is the frequency response function for

the LTV system, K(t,cc). We know that the frequency response function exists from

equation (3.1.15). Substituting the frequency response function into equation (3.2.7)

above, we obtain

it

y(t) f J (t,0x) dZ(cx) . (3.2.8)
-it

Equation (3.2.8) defines the evolutionary spectral representation of the nonstationary (or

evolutionary) random process {y(t)) (see Priestley, 1965, and Priestley, 1981, pp. 825-

826). As such, it is analogous to the spectral representation for wide-sense stationary

random processes. We will see that this representation of a nonstationary random process

is useful in the characterization of nonstationary signals. We will also present the

implications of various properties of the process (y(t)I on the behavior of the underlying

system model, k(tt).
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3.3 CLASSES OF NONSTATIONARY RANDOM PROCESSES AND
IMPLICATIONS OF LINEAR TIME-VARYING SYSTEM MODELS

We have seen in the previous section that a zero-mean, finite variance nonstationary
random process {y(t)) may be modeled as the output of a LTV system excited by a wide-

sense stationary random process; in other words,

00

y(t) = 1 k(tj) c,(r) (3.3.1)
= -00

The evolutionary spectral representation of the process, given by

I r

y(t) = 2 J K(t,a) dZ(a) , (3.3.2)

was also presented. Consider from equation (3.3.2) that the statistical properties of the
random function, (y(t)), are intimately related to the properties of the frequency response
function of the underlying LTV system model, K(t,Qt). In this section we will consider the
implications of the system response function, K(t,0), on the statistical properties of {y(t))

for the class of almost cyclostationary random processes.

Define the (symmetric) autocorrelation function for the random process (y(t)) as

Ryy(t,>,) = E [ y(t+k)y*(t-k) I . (3.3.3)

The random process {y(t)) is said to be almost cyclostationary if Ryy(t,k) is an almost

periodic function of t for each X (see Gardner, 1986, p. 302). In other words,

00

Ryy(t,k) I rn(k) e1int (3.3.4)

where
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Urn 1 T-iont
= T-* 2T Ryy(t,X) e(335)

t=-T

and {on is a sequence of increasing frequencies independent of X.

The random process t y(t) } is almost cyclostationary if the underlying LTV model

for I y(t)) has a frequency response function which is almost periodic in t for all a, in other
words if k(tt) represents a LPTV system. In order to understand this, first assume that the

frequency response function for the underlying LTV system model is almost periodic in t.
From the discussion of almost periodic frequency response functions presented in Chapter

2, we know that

00

K(t,) = an(cz) eiwAl (3.3.6)
n= -o

where

to _ono)
lim 1 e x ItO(0 e (3.3.7)

t> t=-1o

From the LTV system model for { y(t)) given by (3.3.1), we obtain

o~o "Itiwn(Ox)t

y(t = I I f an((a)e dZ(ct) (3.3.8)
n=--- -t

Substituting equation (3.3.8) into the expression for Ryy(t,?X) given by equation (3.3.3)

and simplifying, we obtain

Ryy(tk) = (Y 2 k(t+k,t)k*(t- ,t) (3.3.9)

It is straightforward to show that
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2

R~~(tX = - (t+k,cx)K*(t-k,cx) dcx (3.3.10)

Substituting for K(t,cx) from equation (3.3.6) into (3.3. 10), we obtain

RY~') -_f Y. Y an(cz0a*m(cx) e ed
2-it n= -oo m= -o

(3.3.11)

Recall that the LTV system represented by k(tjt) is causal, and so from the discussion of

causal LPTV systems presented in Chapter 2, we know that

Wno(cx)= POC+wOn . (3.3.12)

Our expression for Ryy(t,X) can therefore be rewritten as

RY~')=Gi2pXWn(o~ i(Oon-Owom)L
2n(tX f -~ an(cx)a*m(c)e( onmdQ e

n=-o m=-oo -it

(3.3.13)

Notice that the sequence

(C))onO()om *n = -. , -1,0, 1, m , 10, 1, .j(3.3114)

can be thought of as a sequence

(0j: j=1 ,10 1,.. (3.3.15)

of distinct, increasing frequencies. Now define

2 nt

r() G a,(cx)a~n(cX) Ci(2pcL+woon-s-% 1 I) Adct (3.3.16)

where the set
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NMj ' n,m: Won-Wt)om= 4)j ) (3.3.17)

Our expression for Ryy(t,,) may therefore be rewritten as

Ryy(t,X,) = ri(k.) e i(Pit ;(3.3.18)

j=..€

in other words, Ryy(t,X) is an almost periodic function in t. So, if the underlying LTV

system frequency response function is an almost periodic function of t, then { y(t)) will be

an almost cyclostationary process.

Next, assume that {y(t)} is almost cyclostationary, but the frequency response

function for the underlying LTV system model is not almost periodic. In other words,

assume that

I-,t°-icot
I K(t,a) e = 0 (3.3.19)

to---oo 2t, t=-to

for any choice of w or a. Consider that equation (3.3.19) implies that

oo -iot

, K(t,0x) e (3.3.20)
t= -oo

exists for all w and a. Since the product of convergent series is convergent,

equation (3.3.20) implies that

Kt,oX)K* (t2,(x) e-wt eiW2 (3.3.21)
tl= -0 t2 

= -

exists, or by a change of variables,

e' lot e (3.3.22)
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exists for all 0 and y.

Since {y(t)) is almost cyclostationary,

lim I T e-iont
T--+ 1. Y, Ryy(t, X) (3.3.23)

T-o 2T=-T

exists and is nonzero for some sequence of (On} and some X. From equation (3.3.10), we

obtain

It Tr lirn l
T---*oo 2--T t e -" t d (3.3.24)

- 7t t=-T

exists and is nonzero. Notice that equation (3.3.24) implies that

T

I K(t+ .,O)K*(t-k,c) e iOnt  (3.3.25)
t=-T

exists and is nonzero over some interval in oc. Moreover, equation (3.3.25) implies that

x K(t+X,OC)K*(t-?.,O) e 'Ont  (3.3.26)

diverges. Notice that if the sum in equation (3.3.26) diverges, then the sum in

equation (3.3.22) also diverges, which is a contradiction.

From the discussion presented above, we see that the characterization of almost

cyclostationary random processes is intimately related to the characterization of LTV

systems with almost periodic frequency response functions. We will make use of this fact

when we cons'.'er the empirical analysis of LTV systems in Chapter 4.

47



3.4 SPECTRAL CORRELATION FUNCTIONS FOR NONSTATIONARY
RANDOM PROCESSES

The conventional power spectrum has proven to be a useful means of characterizing

wide-sense stationary random processes in the frequency domain. VaricuN extensions of

the concept of the power spectrum for nonstationary random V.,cesses have been proposed

over the years (see Lyones, 1968, and Cohen, 1989, for a review of the subject). In this

section, we will discuss a technique which has proven useful in the study of finite-energy

and almost cyclostationary random processes. This technique is based on the fact that, for

a nonstationary random process, correlation exists between distinct frequency components

of the spectral representation. Estimates of the spectral correlation function therefore

provide a means of characterizing the random process in the frequency domain. For a more

thorough treatment of the subject of spectral correlation functions, see Gardner, 1986,

pp. 301-359, and Bendat and Piersol, 1986, pp. 447-468.

Assume that { x('t)) and I y(t)} are discrete-time random processes such that

E[ x(i) ]=0 , (3.4.1)

E[I x('t)I 2 <oo , (3.4.2)

and

I x(t) I<, (3.4.3)

for each t and for every realization of (x(t)}, and such that

E[ y(t) () (3.4.4)

E l I y(t) 12 1 < (3.4.5)

and

I V(t) I < (3.4.6)
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for each t and for every realization of { y(t) }. Define the finite-duration Fourier transforms

of {x(t)} and fy(t)} as

'tO
XO(Cot) = x('r) e (3.4.7)

'=-to

and

to
Yo(o)) = Y y(t) e . (3.4.8)

t=-o

Note that both Xo(cx) and Yo(w) exist since, from equations (3.4.3) and (3.4.6), they are

finite sums of finite-amplitude sequences. Formally define the cross-spectral correlation

function as

lim uim '~Syx(0,ca) = t-* o- E [Yo(co)Xo*(ot)] (3.4.9)

(see B',ndat and Piersol, 1986, pp. 448-450). Notice that, in some sense, the cross-
spectral correlation function indicates the amount of correlation between distinct spectral

components of the two random processes, { x(T)} and (y(t)). Substituting the definitions

for the finite-duration Fourier transforms given by equations (3.4.7) and (3.4.8) into

(3.4.9), we obtain

lim lm to to
SYx(O ),c) = t to - *4 2: . Ryx(t,,t) e e (3.4.10)

t=-to 'T=-T0

where we have defined the (asymmetric) autocorrelation function

Ryx(t,T) = E[y(t) x*(t)I . (3.4.11)

Assuming that the limit in equation (3.4.10) exists, we obtain
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Syx(,)o = , Ryx(tt) e e-t (3.4.12)

For the moment, assume that (x('t)} and {y(t)} are wide-sense stationary random

processes so that

Ryx(t,t) = 1Py,(t-t) . (3.4.13)

From equation (3.4.12), we obtain

N' N' eat-i

Syx(0ooA) = E I Wx(t-t) e T e , (3.4.14)
t=-00 "T=-

or by the change of variables X = t-t,

Syx((O'o) =Ryx(X) e WXe i (
W-

'
a

) t  (..5

T=-0 o

Notice that the summation in brackets in equation (3.4.15) above is the conventional cross-

power spectrum, Syx(co) (see Bendat and Piersol, 1986, p. 121). Equation (3.4.15)

therefore becomes

SYX(Wa) = Syx(0o) 5(o-a) (3.4.16)

In other words, wide-sense stationary random processes exhibit spectral correlation only

on the line o) -- cx in the (o,o) bifrequency plane.

Consider the system indicated schematically in Figure 3.4.1. The purely random

process {c('t)} excites an LTV system represented by k(t,,r) to produce the nonstationary

random process {y(t)}. This same purely random process also excites the LTI system

represented by h('r) to produce the wide-sense stationary random process Ix(T)). From the

discussion of Chapter 2, we know that x(') is given by
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x(t)= h(,t-X) e(X) (3.4.17)

From the spectral representation of {(let)) given by equation (3.2.4), we obtain

x(T) = f I h(,-X) eiYdZ(y) , (3.4.18)
-2 1c..o

or simply

x 1r) = I f H(y) eir dZ(y) (3.4.19)

where H(y) is the frequency response function of the LTI system given by

equation (2.3.6). Substituting equation (3.4.19) into the definition of XO(a) given by

equation (3.4.7), we obtain

XO(C) f H(y) e dZ(y). (3.4.20)

Recall from equation (3.2.8) that {y(t)} admits the evolutionary spectral representation

It

y(t) f ± (t,ca) dZ(a) (3.4.21)

Substituting equation (3.4.21) into the definition for YO(w) given by equation (3.4.8), we

obtain

Yo() (t,OC) e- dZ(cc) .(3.4.22)
S t=-to
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From the definition of the cross-spectral correlation function given by equation (3.4.9), we

obtain

Syx(coo) = him E [Yo(co)Xo*(a)]t0---) 0- --) ,o

It2 J K(o,p) H*(P) 8(3-a) dj3 , (3.4.23)

or, simply,

(y2

Syx(w,a) = - K(co,a) H*(oa) (3.4.24)

Notice that equation (3.4.24) gives a very straightforward relationship between the cross-
spectral correlation function for {y(t)} and {x(r)} and the linear systems which produced

these random processes. We will make use of this fact when we consider the empirical

analysis of linear time-varying systems in Chapter 4.
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FIGURE 3.4.1
LTV AND LTI SYSTEMS EXCITED BY A 2-URELY RANDOM PROCESS
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3.5 CHAPTER SUMMARY

In this chapter we have introduced some of the fundamental concepts regarding the

modeling of nonstationary random processes using linear time-varying filters. The use of a

frequency-domain characterization of the LTV system model to obtain an evolutionary

spectral representation for a nonstationary random process was also presented. Finally, the

relationship between the LTV system models for nonstationary random processes and the

spectral correlation function for these random processes was presented. In the following

chapters, these concepts will be applied to the characterization of LTV systems excited by

random signals.
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4. CHARACTERIZATION OF LINEAR PERIODICALLY
TIME-VARYING SYSTEMS

In previous chapters, we reviewed the principal methods for analytically describing

a discrete time linear time-varying system and noted the properties of such system

descriptions. Techniques for the frequency-domain analysis of the nonstationary signals

arising as the outputs of time-varying systems were also presented. We now turn our

attention to the problem of empirically characterizing LPTV systems. To be more specific,

we require techniques for obtaining a reliable estimate of the system transmission function,

K(o,ct), for a given LPTV system. The development and assessment of these techniques

will rely heavily on the concepts and definitions presented earlier.

4.1 CHARACTERIZATION OF LINEAR PERIODICALLY TIME-
VARYING SYSTEMS via DETERMINISTIC SIGNALS

Recall the definition of the time-varying system transmission function, K(cW,o),

given by equation (2.3.25)

K(0w,ct) = tMt,U) e , (4.1.1)
t= -0,,

where ic(t,cx) is the time-varying frequency response function. Since K(t,oc) is defined as

the response of the LPTV system to a complex sinusoid of frequency u, the system

transmission function can be viewed as the Fourier transform of the output signal produced

by an applied complex sinusoid of frequency cc. This observation suggests that one

straightforward method of estimating the system transmission function for a given LPTV

system would be to apply a complex sinusoid of a known frequency, observe the resulting

output signal, and compute an estimate of its Fourier transform. This would yield an

estimate of the system transmission function, K(w,ax), for some specific input frequency,

ot. Estimates of the system transmission function for other input frequencies could be

obtained by repeating this process for each desired input frequency.

Consider applying a complex sinusoid of frequency x to a causal, stable LPTV

system. Assume that the input signal, x(!), as given by

x(t) = cos(Qt) + i sin(atX) = e (4.1.2)
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has been applied to the system of interest for a sufficient time for the system to have

reached a steady-state condition. If we obtain N samples of the resulting output sequence,

y(t), we may compute the Fourier transform of the output sequence, Y(o)), as

N-I '-i9

Y(W) = I K(t,oQ)e . (4.1.3)
t=0

From the properties of the Fourier transform, we obtain

1I
Y(O) = - fK(y,ac) FN(y-o) dy , (4.1.4)

where FN(y) is the Fejer kernel, defined as

N-I

FN(Y) = I e- '1  (4.1.5)

(see Papoulis, 1962, pp. 42-47). For N sufficiently large, the Fejer kernel may be

approximated by a Dirac delta function, and so

Y() K(0,oc) (4.1.6)

Several points can be made concerning the method of estimating K(oa) presented

above. First, the accuracy of the approximation of K(c,a) by Y(wo) is intimately related to

the available length of observed data, N. This issue of distortion of the estimate of K(O,ct)

due to finite data lengths closely parallels the issue of distortion of spectral estimates due to

finite data lengths. The familiar method of applying a windowing function to the observed

data to reduce the effects of finite data lengths could also be applied to improve our estimate

of K(wt) (see Harris, 1978). Secondly, this method provides an estimate for K(w,oa)

for some specific input frequency. cc. Estimation of K(wx) for other values of oX requires

that the frequency of the applied signal be changed and that a new record of the output

sequence be obtained after sufficient time has passed for a steady-state condition to be

reached.
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The final point to be made regarding this method relates to the generation of the

applied input signal. For a digital implementation of the LPTV system, obtaining a

complex sinusoidal input is a relatively straightforward matter, involving no more than the

generation of a sequence of sines and cosines. However, in a LPTV system in which

analog signals are digitized and then processed to obtain digital sequences, it is impossible

to generate a complex input signal. One may overcome this problem by applying two

separate input signals, cos((xt) and sin(ctt), and computing the Fourier transforms for each
resulting output sequence separately. An estimate for K(w,ax) could then be obtained from

these two Fourier transforms. To illustrate, let yR(t) and yi(t) designate the outputs

obtained from the LPTV system due to application of the input signals cos(atX) and

sin(atc), respectively. By linearity of the system of interest and of the Fourier transform,

we have

YR(O0) + iY1(0o) = Y(o) = K(o,ot) , (4.1.7)

where YR(W) and YI(o) are the N-length Fourier transforms of yR(t) and yl(t),

respectively.

Note that the accuracy of our estimate for the system transmission function is now

dependent on both the length of the observation interval and on the relative phase of the two
input signals. Assume that there is a phase error of 4 between the two input signals; in

other words, assume that we apply cos(axt) and sin(cct + 0) at the input of the LPTV

system. For small values of phase error,

sin(err+O) = sin(oxT) + ,cos(ot) (4.1.8)

so that

xO(C) = cos(at) + i sin(oTr+O) e + e KI(4.1.9)

Forming oUr estimate for the system transmission function as before, we obtain

Yo(o) = K((o,cx) + P KIo),-cc) (4.1.10)
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The significance of this distortion in our estimate of the system transmission function

depends on the magnitude of the phase error and on the nature of K(c,ax).

4.2 CHARACTERIZATION OF LINEAR TIME-VARYING SYSTEMS via
NONDETERMINISTIC SIGNALS

We now consider a technique for estimating the system transmission function of a

LPTV system by observing the response of the system to a nondeterministic input signal.

This technique is based on the observation made in Section 3.4 that the cross-spectral

correlation function between the output of a LPTV system and the random input to the

system is directly proportional to the LPTV system transmission function. In this section,
we will derive the approximate statistical properties of the estimated cross-spectral

correlation function and of the estimated system transmission function.

Let tc(t)) by a wide-sense stationary, complex Gaussian purely random process

satisfying

EIE(t)]=0 , (4.2.1)

and

le2 T I = T2 (4.2.2)E[ 'tlE*'t2 ]= 0 e Ils e

Next, assume that {e('r)} is applied to the input of a causal, stable LPTV system with the

simple system transmission function

K(w,ct) = Ho1(a) 6(o-o 0 - -, (4.2.3)

where p is the rate of the system. Note that for this LPTV system, K(W,o) is non-zero

only along the line

= ot) + (4.2.4)P

More sophisticated LPTV systems may be considered to be linear combinations of systems

of this particular forn.
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Recall from equation (3.2.4) that the spectral representation for {E(t)} is given by

IT

EM't f e p dZ(P3) (4.2.5)

-I

The K-length discrete Fourier transform of {(e()} is given by

K-I

EK(ck) = £r) e- ikt t , (4.2.6)
't0

where

k k 0, 1, K- 1 (4.2.7)

Substituting for the spectral representation for {c(r)} into equation (4.2.6), we obtain

'I
K(aOk) = 2n FK(3-Ok) dZ(P) , (4.2.8)

-it

where FK(P) is the Fejer kernel of equation (4.1.5). From equation (4.2.8) we see that the

{ EK(ak) } are a set of zero-mean, complex Gaussian random variables. Furthermore,

note that

E LFK(cXk) E*K(j)j = 2 FK(P-Xk) F* K(13-(xj) dp3, (4.2.9)

or simplifying,

E K(cxk) j = K t 2  " kij (4.2.10)E K(CCk) K(j) 0 9 else
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so that { SK(ak) I are a set of i.i.d. complex Gaussian random variables with zero mean

and variance Ka 2.

Now define the N-length discrete Fourier transform of the system output, y(t), as

N-I

YN(cWn)= y(t) e i  (4.2.11)

Recall from equation (3.2.8) that we may express y(t) as

'i
y(t) = 2 - K(t,ct) dZ(cc) , (4.2.12)

where K(t,cx) is the system response function. For the LPTV system under discussion,

I iOt)t

IC(ty) = I- K(Cx,y) e dt , (4.2.13)

or

ic(t,y) = H,(y) exp{ i(wo~ +Y)t } (4.2.14)

Suhstituting for the system response function in equation (4.2.12), we obtain

IC

y(t)= J Ho(y) exp { i((o + -Y )t ) dZ(y) , (4.2.15)

so that

YN(WOn) = I f H(7) FN ((n-OO,- - )dZwy) •(4.2.16)
-IT(
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Notice that the I YN((O,,)) are a set of complex, zero-mean Gaussian random variables.

Furthermore, consider that

E {YN((On) Y*N((Oj)} 2 WIo(y 12 FN (mn-(Oo -)F*N (Wi-Wo -)dy,(4.2.17)

-m

so that for N sufficiently large,

E {YN(w ) Y*N((Oj)- NU2 IHo(P(Wn-o))12", n =e j (4.2.18)0 ? elIs e

Now consider choosing N, the length of the output DFT, and K. the length of the

input DF, so that

NN -(4.2.19)

2 tn 2lnk
For anyn 21n and anyot- K ' we may write

27t(n-k) 27tk 'n k
On = N pK p- nk + - (4.2.20)

From equation (4.2.20) w. note that the set of points

(On+m,ak+m): m = 0, +1 . + M/2) (4.2.21)

lie along a line of slope - passing through the point (OnOk).

Now consider the two-dimensional complex random variable

l(Wn,OCk) = N YN(OW ) FK(k) (4.2.22)

Note that
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E { l(On,ak) } - 2 H f(y) FN((On-0Oo- -) F*K(TY-ak) dy , (4.2.23)

or, for N and K sufficiently large,

{I(=Onk) p (4.2.24)
0 ; else

Furthermore, note that

2 2 y4 2
E I(0nek) I E {(3nOk)I + - I Ho(p(On-wO)) , (4.2.25)

so that

Var { I(WOaOk) = I Ho(p(1n2o))1. (4.2.26)

From equations (4.2.24) and (4.2.26) we see that I (Ow,,Ok) is an inconsistent estimator

for the system transmission function.

Recall that our choice of N and K led to a set of discrete frequency points such that

(On+m,eXk+m): m = 0, +1 ... M/2} lies along a line of slope lip in the (o,ax)

bifrequency plane. If we assume that K(o,ai) is essentially constant over this set of points,

we could consider estimating K(oo,0) by smoothing I(COn,Ok). Define the random variable

M/2

SM (wn,eXk) = MI1 I I (0On+m,eXk+m) (4.2.27)
m = -M/2

and note that

M/2

E { SM(On,-xk) } = +1 E { l(Wn+m,Xk-m) } (4.2.28)
Im:- Mo
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For N and K sufficiently large, and assuming that K(co,a) is constant over the set of points

{ (WOn+m,tXk+m): m = 0, ±1 ... , ± M/2 ), we obtain

0 2 H°(Ctk) " On = (o + OX'k

E { SM((On,ak) } , p (4.2.29)
0 else

Further, note that

E{I SM(oak) E (SM(O ) kI 12+ P(M+I I Ho(p(o).-o)) 2, (4.2.30)

so that

Var { SM(ton,Otk) } 4 1 Ho(P(ton-o)) 12 (4.2.31)
p(M+1)

If we pick M so that as M, N, and K increase without bounds M/N -* 0 and M/K -- 0,

then SM((oL,Ctk) is a consistent estimator of the system transmission function.

We now consider the statistical properties of SM(wn,afk). First, notice from

equation (4.2.27) that

M/2 1 *

SNI ((O.,ck) = jjIy E YN(ton+mn) K(Otk+m) - (4.2.32)
m = -M/2

For M sufficiently large, and for (o) 0 ),o + OXk,P

{ YN(t)on+,) E*K((Ik+in): m 0, ±1. + M/2 } (4.2.33)

are a set of uncorrelated. identically distributed complex random variables. We can

therefore argue that SMN(o.OXk) is approximately Gaussian distributed with zero mean and

var __ince I ti ,(p(Wn-t0) ) I . For Wn = (00 + - SNI(wn,Otk) is approximately
vN1 1) p

04 2
Gaussian distributed with mean (I Ito(p(On-J)) and variance I tlO((0n- (o)) 12.

P(M+1)
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Finally, assume that we estimate the noise variance, y2, from the given

observatiors of { E(t)) as

K- 2 y2  2
K = (2K (4.2.34)

where X 22K is a chi-square distributed random variable with 2K degrees of freedom. Our

estimate for the system transmission function is therefore given by

((On,ak) = 
1 2SM((on,ak) . (4.2.35)

For K large, (2 is approximated by

2 = o2 TI (4.2.36)

where rl is a Gaussian random variable with unit mean and variance 1/K. Our estimated

system transmission function is therefore approximated by

K(c 0 ,ctk) + Ho(p(cOn-(o)) 1 ( 0 , +OC k
A flP(M+I) P
K(Wwak) Ho(p(,-o)) (4.2.37)H0(p(M+-o) p-. ; else

1.. P_(M+1)

where l. is a complex, zero-mean, unit variance Gaussian random variable.

Now consider a more sophisticated LPTV system composed of linear combinations

of systems of the form assumed above. In other words, assume that

K(w,cx) = f lto() 8(w-w,- -) (4.2.38)
0 P

for some set of distinct ( 0), 1. Notice that FK(Xk) is still described by equation (4.2.8),

but that now
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YN(Wp. f ~y FN(Wf-CO--') dZ('Y) (4.2.39)

Since the I oxj are distinct, for N sufficiently large we obtain

Nay2 I 1H 0(p(Wn-o))I 2 n =jE I YN(W~ Y*N(%)j) 0 (4.2.40)

1. 0 ;else

If we again define I(0fl,ak) by equation (4.2.23), we obtain

E I I(WOn,Ctk) } aiLo~ak) Wn= + pC (4.2.41)
0 else

and

Var ( I(W,ck) I ~Ho(p((O.n.(w)) 12. (4.2.42)
P 0

Using equation (4.2.28) as our definition for SM(wOn,Ok), we obtain

CF21-(ak) n= o+LXk(.43E ( Sm(0f,ck) } 42.3
ok else

and

Var f SNI(o))sxCk) = 4 H0 (p((' 0 -(O.)) 12. (4.2.44)

Defining our estimate for the system transmission function by equation (4.2.35) yields a

complex random variable which is approximated by
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K(WnOt~k)+ + ; on =  )o + X--(M+t> p
k (o n,a k)-+ , (4.2.45)

o0.L ; else
N p(M+1)

where p. is a complex Gaussian random variable with zero mean and unit variance.

Finally, consider the case of applying this technique for estimating K(oa) when

both I er)) and {y(t)) are observed in the presence of additive, stationary independent
white noise, as indicated schematically in Figure 4.2. 1. Assume that the input observation

noise, ( (r)), and the output observation noise, { (t)}, are wide sense stationary complex

Gaussian random variables such that

E (t1 ) *(t) 0; 2 ;tl = t2(4.2.46)
t ; else

and

E {O(t)0*('t2) } 002 Telse (4.2.47)

Further, assume that (O(t)) and ({(t)} are mutually independent, and independent of

The discrete Fourier transforms of the observed input, (r(t)}, and the observed

output, (x(t)}, are given by

K-I

RK((Xk) = r(t) e = CK(ak) + K(Xk), (4.2.48)
t=0

and
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N-I
XN((On) = x(t) e-= YN(O~n) + (NW(4.2.49)

t 0

where

K-1 -iaT
(m(Xk) (T~~Q) e = - f FK(Y-aXk) dZ;CY) ,(4.2.50)

0 2

and

N-I
=D(tn 0(t) e1n =2I f FK(yf-ctk) dZ4o(y) .(4.2.5 1)

Now define the random variable I'(O- ,ak) as

I'(oWn,ak) = L Xr.((on) R*K(ak) ,(4.2.52)

and let

M/2

S'M(wn,Cak) = ZI I '(GOn+m,ak~m) (4.2.53)
m=-M/2

so that

M/2

S'M(wfl,ak) + M+ 2 YN(Ot)n+m) £K(ak+m)
m=-M/2

X+ I LYN(O()n+m) (D K(aXk+m)
m=-M/2

M/2

+ 1- j N(O)n,+m) K((Xk+m)

M/2

+NI + N N(Un+m) q) K((Xk+rn) .(..4

ni=-NI/f2

67



Consider the term

M/2
MI m_ M2 N N(nm *

M+ I N E K(ak+m) (4.2.55)
m=-M12

in equation (4.2.55) above. Since { (t)) and {(cc)} are independent Gaussian random
variables,

E { N(O) K((Xk) } 0 (4.2.56)

and

E2- k ; N( On+j) E K(k+j)

{P2 j = 0(4.2.57)

0 else

For large M, the summation of equation (4.2.55) is approximated by a complex Gaussian

random variable with zero mean and variance Similarly, the term
p(M+I)

M/2

M+I m =N(O)n+m( K(rnk+) (4.2.58)m = -M/2

is approximated by a complex Gaussian random variable with zero mean and variance

P(M+I)

Now consider the term

M/2 K

M+I 2. N YN(On+rn) K(ak+m), (4.2.59)m=-M/2

and note that, since E(t)) and JO(T)) are independent,
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E ( YN(W)(I) *K(Cak) } =0 . (4.2.60)N

Furthermore,

E YN(O*) cI ( 1 ( k Y((0).) (I)* Ka 3 )*

0 p -n -it

FN(Wn-Oo- ) F*N(Wn±j-rO, p-) FK(f-Ok) FK(J-aXk+j)d' df3. (4.2.61)
p p

For N and K sufficiently large,

I- {t( YN(O-n) (D* 13 ( YN(On,) (D) K(C * }F 2P

-I Ho(p(w1 n-w 0 )) • j 0 (4.2.62)

0 ; else

Therefo e, the term given in equation (4.2.59) is approximated by a zero mean complex

Gaussi, ri random variable with variance ! Y I H(p(wn-wo)) 12

p(M+I) o

Jur estimate for the variance of the input noise process is given by

K-I, 2 = Y I r('t) 12 (4.2.63)
K

For K large, we may approximate &2 by

y2 + (4.2.64)

Our estimate for the system transmission function is now given by
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Sa) M(Wn,k) (4.2.65)

or, from the discussion presented above,

(y2 Ho(p(oWn-o.))+PO+1+ L2+93 , O)n = (Oo + q k

k 0ln,ak) { C2+Oy0 2 p
.0+LI.tt+.12+ 9 3  ; else

(4.2.66)

where j.to, Lt1 , 9i2, and 913 are complex zero-mean Gaussian random variables with

variances

022
0O2 p(M+y)(+$2 2  H(p(Wn-WO)) 12, (4.2.67)

o~a 2

012 - (+I)( (4.2.68)

2 - -2 (4.2.69)(Y2 p(M+1)(Ci2+(0 2) '

and

(y2002  I Ho(P(I-0)o))12, (4.2.70)

p(M+I)(0 2+a02 o

respectively.

The results obtained above for frequency-smoothed estimates of K(o,oa) may be

extended to time-avera-ed estimates for the system transmission function. To be specific,

assume that we obtain L observations of the input and output signals of length K and N,

respectively. If the L observations of the output process are obtained in such a manner that

the input samples producing one set of output samples are unrelated to the input samples

producing any other set of output samples then we may invoke the mixing assumption of

Sec ion 3.1 to claim that the L. output observations are statistically independent. For each

observation, form the discrete Fourier transform of the input and output signal in
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accordance with equations (4.2.6) and (4.2.11). The estimate for the system transmission
function is obtained from

K ((n,ak) =- SL((on,ak) (4.2.71)
02

where y2 is the estimate for the input noise variance based on the LK available samples of
the input process, and

L

SL((OncXk) = N YNI(O)n) * KI(OCk) • (4.2.72)

In equation (4.2.72), YNJ(On) and EK.I(ck) are the l-th discrete Fourier transform of the

input and output signals. Following a line of argument identical to that presented for
frequency-smoothed estimates, we obtain

a2 cxk
'/)(on,Ok)= {2--2 H°(p(Wn-(O°))+Vo+vl+V

2 +V 3 ; (O n = o,0 + -

Vo+Vl+V 2 +V 3  ; else

(4.2.73)

where v0, v I, v2, and v3 are complex zero-mean Gaussian random variables with
variances

02a1
2 - PL(a2+aO2) o Ho(p(ton-to)) 12 (4.2.74)

0,2 = 2F 2  (4.2.75)pL( 02+002 ) '

(y2( 0 2
(4.2.76)

and

(y25 2
'- 4 2+°2) ' I H)(p(tWn-Wo)) I (4.2.77)

4 pL(02+CF 2 ) ()
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respectively.

Several comments can be made regarding the method for estimating K(o),a)

presented above. First, we again assumed that a complex input signal was applied to the

system under consideration. For systems in which only real signals may be applied to the

system, we could apply the real and imaginary components of the input signal to the system

independently and linearly combine the observed outputs to estimate the system

transmission function, as was described in Section 4.1. However, for a complex white

noise process, it is required that the real and imaginary components be independent and

identically distributed (see Koopmans, p. 263). The real and imaginary components for

the input signal could therefore be obtained from two K-length observations of data

obtained from a single white noise generator.

Secondly, we assumed that the input noise process had a flat spectrum, i.e., we

assumed that its power spectrum was constant for all frequencies. In practice, we cannot

guarantee that the input noise process has a flat spectrum. However, we could estimate the

spectrum of the input noise process, SE(ot), from the given observations, and estimate our

system transmission function by

A SM (On,ak)
K((0n,ak) = SE(ctk) (4.2.78)
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(tr)t

AS-9 1-368

FIGURE 4.2.1
ESTIMATION OF K(oa) IN THE PRESENCE OF OBSERVATION NOISE
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4.3 CHAPTER SUMMARY

In this chapter we presented two techniques for empirically characterizing linear
periodically time varying systems. The properties and limitations of both techniques were
discussed. We now turn our attention to the results of implementing these two techniques

to the characterization of several LPTV systems of interest.
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5. RESULTS OF IMPLEMENTATION OF METHODS FOR THE
CHARACTERIZATION OF LINEAR

TIME-VARYING SYSTEMS

We now briefly present the results of implementation of the methods for

characterizing linear periodically time-varying systems presented in Chapter 4.

Characterizations of a set of LPTV systems were conducted using both deterministic and
nondeterministic input signals. We begin by considering the theoretical system

transmission functions for the LPTV systems of interest.

5.1 THEORETICAL SYSTEM TRANSMISSION FUNCTIONS FOR THE
LPTV SYSTEMS OF INTEREST

A set of five LPTV systems were used to evaluate the methods for characterizing
LPTV systems described earlier. The first two of these five systems were selected because

they represented basic elements that are commonly found in more complicated LPTV

systems. Characterization of these basic system elements is therefore a necessary first step

towards characterizing more complicated LPTV systems. The final three LPTV systems

evaluated here are complicated systems based on the interconnection of simpler system

elements.

Figure 5.1.1 presents the block diagram of the first LPTV system of interest, a
simple rate 1/2 decimator. In this system, the input signal, x('t), is sampled at output

sample times, t, such that r = 2t to produce the output signal y(t). The system response

functior kl(tT), is therefore given by

k els T = 2t (5.1.1)klt ) , 0 " else

Using equation (2.6.8), the system transmission function is given by

00 00

Ki(w,a) = e X 6(w-2nn-2cc) . (5.1.2)
00
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This function is indicated schematically in Figure 5.1.2. For this figure, the squared

magnitude of K(co,a) was evaluated at the set of discrete points in the (o,,a) bifrequency

plane defined by

2rmnn (5.1.3)

and

2rtk
oak = K (5.1.4)

where N = 128 and K = 64. Note that input and output frequencies have been

normalized by 7t in Figure 5.1.2.

Figure 5.1.3 presents the block diagram for the second LPTV system of interest, a

simple quadrature demodulator. In this system, the input signal, x(t), is demodulated by a

complex sinusoid of frequency w,, to obtain the output signal y(,t). The system response

function, k2(t,t), is therefore given by

t i(.W -o o t
k2(t t) e t = t (5.1.5)0 1 elIs e

The system transmission function for this system is given by

K2(wo,c) X e , (5.1.6)
t - - o

or

K'(wx) = 6 (x-2tn~o(,-t) .(5.1.7)

This s, stein transmission function is indicated schematically in Figure 5.1.4. The squared

magn itude of K(ox),o) was again evaluated at a discrete set of points in the (oxo)
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bifrequency plar, according to equations (5.1.3) and (5.1.4) with N = K = 64. Input

and output frequencies have been normalized by it in Figure 5.1.4.

Figure 5.1.5 presents the block diagram for the third LPTV syszem of interest, a

rate 3/2 interpolation system. In this system, the input signal is up-sampled (i.e., zero-

padded) by a factor of three, passed through a LTI low pass filter, and decimated by a

factor of two. The system response function for the rate 3 up-sampling is given by

1 ; 3,t = t (5.1.8)k ,t 0 ; e I s e

The system transmission function for the rate 3 up-sampling is therefore given by

K(P,ox) 6(P 2itn-t(/3) (5.1.9)
n = -0-

The overall system transmission function for the rate 3/2 interpolation system, Ko(oo), is

given by

1C

Koto,)2=1 1J K1(o,3) H(3) K(P.cz) do , (5.1.10)

or simply

K o~ = 2 !l(cx/3+27tn) 6(to-2n(rn-2n)-2a/3). (5.1.11)
in1 = - c~ ln - ,

Figure 5. 1.0 schematically indicates this system transmission function. Figure 5.1.7

presents a three-dimensional view of K,,(a).cx For these plots, the squared magnitude of

the s steni tiansmission fuNction was cvaluated at a set of discrete points in the (o,a)

hiffrequency plane according to cquations k5.1.3) and (5.1.4) with N=96 and K=64.

Figure 5.1.8 presents a block diagram for the fourth LPTV system of interest, a
rate 1/2 quadrature ,ampling system. In this system, the input signal, xt't), is demodulated
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by cos ( 't) and -i sin (r- t), and sampled in quadrature to obtain the in-phase and

quadrature components of a digital quadrature representation for x('t) (see Baugh, 1988).

The system response function for this system is given by

cos(2 "t) " = 2t

k(t,t) -i sin("t) ; c = 2t+l (5.1.12)

0 e I s e

The system transmission function for the rate 1/2 quadrature sampling system is therefore

given by

K(w,ox) = (1-i ei %) X 6(w-27tn-2o-t) + 5(o)-21tn-2a+I:) . (5.1.13)
n=-

Tills system transmission function is indicated s-hematically in Figure 5.1.9, with the

input and output frequencies again normalized by t. Figure 5.1.10 presents a three-

dimensional view of this system transmission function. Again, the squared magnitude of

the system transmission function was evaluated at a set of discrete points in the (co,aX)

bifrequency plane according to equations (5.1.3) and (5.1.4) with N=128 and K=64.

Figure 5. 1.11 presents the result of plotting the largest v,!ue of K(.,a) over all (0 for each

cc. In a sense, this plot gives an indication of the response of the LPTV system to each

input frequency. All frequencies have been nrnialized by n. Consider that on the lines

= 2c+nt (5.1.14)

and

w = 2ox-n (5.1. )

the square-nmagnitude of K(w,ox) is given by

I K(w,a) 1 - 2( +sin X) . (5.1.16)

This function is clearly indicated in Figure 5.1.11.
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Figure 5.1.12 presents the block diagram for the fifth LPTV system of interest, a

rate 1/2 quadrature demodulator. Note that this system is a series connection of the simple

quadrature demodulator of Figure 5.1.3 with a gain of 2, a linear time-invariant low pass

filter, and the rate 1/2 decimator of Figure 5.1.1. Using the results of Section 2.4 for the

analysis of L LV network structures, we may express the system transmission function for

'his LPfV system, K3(oo), as

K3 = 1 f 2KI(w,) H(P3) K2(3,L) d , (5.1.17)

where H(3) is the frequency response of the LTI system. Substituting equations (5.1.2)

and (5.1.7) into (5.1.17), we obtain

K3(oha) = 2 H(ca-wo+2ntn) 8(o-2nt(m-2n)+2co-2oc). (5.1.18)
m -o on = -00

This system transmission function is indicated schematically in Figure 5.1.13, with the
input and output frequencies again normalized by 7t. Figure 5.1.14 presents a three-

dimensional view of this system transmission function, indicating the modulation of the
impulse sheet by H(3), the LTI frequency response function. For these plots, the squared

magnitude of the sysiem transmission function was evaluated at a set of discrete points in

the (o,ct) bifrequency plane according to equations (5.1.3) and (5.1.4) with N=128 and

K=64. Figure 5.1.15 presents the result of plotting the largest value of K3(o,ox) over all

w for each oc.
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FIGURE 5.1.1
BLOCK DIAGRAM FOR THE SIMPLE RATE 1/2 DECIMATOR
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FIGURE 5.1.2

THEORETICAL SYSTEM TRANSMISSION FUNCTION FOR A SIMPLE
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FIGURE 5.1.3
BLOCK DIAGRAM FOR THE SIMPLE QUADRATURE DEMODULATOR
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5.2 CHARACTERIZATION via DETERMINISTIC SIGNALS

The method of characterizing LPTV systems using deterministic signals described

in Section 4.1 was applied to the five systems of interest. A complex sinusoid of a

specific frequency was generated and applied to the LPTV system of interest. A

512-sample record of the system output was obtained, and a minimum 3-term Blackman-

Harris windowing function was then applied to this output record (see Harris, 1978). The

512-point discrete Fourier transform of this windowed output data record was computed.

The resulting DFT was smoothed using M = 8 in order to reduce the number of points in
the resulting estimate for K(c0,o), and so simplify the plotting of the data. This 64-point

smoothed DFT was used as the estimate for the system transmis .ion function for the

specific input frequency. The procedure was then repeated for each of K discrete input
2nt

frequencies, Oak = -, where K was chosen so that N/K = p, the rate of the LPTV system

under evaluation.

Figures 5.2.1 and 5.2.2 present the estimated system transmission functions for

the simple rate 1/2 decimator and the simple quadrature demodulator obtained using this

method. Note the close agreement between these estimates and the theoretical system

transmission functions of Figures 5.1.2 and 5.1.4. Figure 5.2.3 presents the estimated

system transmission function for the rate 3/2 interpolator as a logarithmic contour plot.

Figure 5.2.4 presents a three-dimensional view of this estimated system transmission

function. Figure 5.2.5 presents the estimated system transmission function for the

rate 1/2 quadrature sampling system. Figure 5.2.6 presents a three-dimensional view of

the estimated transmission function. Figure 5.2.7 presents the result of plotting the largest
value of the estimate for K(oja) over all w for each a. Note the close agreement between

the estimated system transmission function and the theoretical value plotted in

Figures 5.1.9, 5.1.10 and 5.1.11. Figure 5.2.8 presents the estimated system

transmission function for the rate 1/2 quadrature demodulator. In this contour plot, the
magnitudes are presented in logarithmic form. Figure 5.2.9 presents a three-dimensional

view of the estimated system transmission function for the rate 1/2 quadrature

demodulator. Figure 5.2.10 presents the result of plotting the largest value of K(O,oa) over
all o) for each cc. Again there is close agreement between the estimated sys:em transmission

function and the theoretical values presented in Figures 5.1.13, 5.1.14, and 5.1.15.

A simulation of the effects of quadrature phase error between the real and imaginary
components of the input reference sinusoid was also conducted. Specifically, the real and
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imaginary parts of the input reference sinusoid were generated and applied separately to the
input of the rate 1/2 quadrature demodulator. A quadrature phase error of 1V was
introduced between the real and imaginary components of the input reference sinusoid.

From the discussion of Section 4.1, we would expect to see the term K(o,-ox) appear in

our estimate, where 1 is roughly -41 dB. Figure 5.2.11 presents a contour plot of the

logarithm of the estimated system transmission function obtained using the given reference
sinusoids. Figure 5.2.12 presents the result of plotting the largest value of K(co,ot) over
all (o for each a. From these two figures we note that quadrature phase error in the input

0
reference sinusoids does indeed lead to the term K(ow,-a) in our estimated system

transmission function.
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5.3 CHARACTERIZATION via NONDETERMINISTIC SIGNALS

The method of characterizing LPTV systems using nondeterministic input signals

was used to estimate the system transmission functions for the five LPTV systems of
interest. In each case, a Gaussian input sequence was applied to the system of interest, and

an estimate of the system transmission function was obtained by the appropriate time and
frequency smoothing of the discrete spectral components. Normalization of the estimated

system transmission function by the estimated input noise power spectrum was used, as

described in Section 4.2.

Figure 5.3.1 presents a contour plot of the logarithm of the estimated system
transmission function for the simple rate 1/2 decimator. For this simulation, the input DFT

length, K, was 512, the output DFT length, N, was 1024, the frequency smoothing length,
M, was 8, and the number of averages, L, was 512. Figure 5.3.2 presents the contour

plot of the logarithm of the estimated system transmission function for the simple

quadrature demodulator. For this simulation, K=N=512, M=8, and L=512.

Figure 5.3.3 presents a contour plot of the logarithm of the estimated system
transmission function for the rate 3/2 interpolator. Figure 5.3.4 presents a three-
dimensional view of this estimate. For this simulation, K=512, N=768, M=8, and L=512.

Figure 5.3.5 presents a contour plot of the logarithm of the estimated system
transmission function for the rate 1/2 quadrature sampling system. Figure 5.3.6 presents
a three-dimensional view of this estimate. Figure 5.3.7 presents the result of plotting the
largest value of K(o,0c) over all ct for each a. For this simulation, K=512, N=1024,

M=8, and L=512.

Figure 5.3.8 presents a contour plot of the logarithm of the estimated system

transmission function for the rate 1/2 quadrature demodulator. Figure 5.3.9 presents a
three-dimensional view of this estimate. Figure 5.3. 10 presents the result of plotting the
largest value of K(w,ax) over all o for each (x. For this simulation, K=512, N=1024,

M=8, and L=512. Note that we obtain reasonably good agreement with the theoretical

response presented in Section 5. 1.

A simulation of the effects of using separate real and imaginary input signal
components was also conducted. For this simulation, a single Gaussian noise sequence
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was generated and applied to the input of the rate 1/2 quadrature demodulation system.
Alternating records of the observed input and output sequences were used to produce the
real and imaginary parts of the estimated system transmission function. As in the previous
simulation for the rate 1/2 quadrature demodulation system, K=512, N=1024, M=8, and
L=512. Figure 5.3.11 presents the contour plot of the logarithm of the estimated system
transmission function obtained from this simulation. Figure 5.3.12 presents a three-
dimensional view of the estimate.
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5.4 CHAPTER SUMMARY

In this chapter, the techniques for characterizing LPTV systems described in

Chapter 4 were applied to several systems of interest. The consequences of quadrature

phase error and independent application of the real and imaginary components of the input

signal were also demonstrated.
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6. CONCLUSIONS

In this paper we have presented two techniques for the empirical characterization of

discrete-time linear periodically time-varying systems. These techniques were developed
amid a framework ok concepts related to the analysis of discrete-time LPTV systems and to

the signals produced by such systems. The results of applying these techniques to several

LPTV systems of interest were also presented.

From the tests presented in Chapter 5, we see that characterization of LPTV

systems using deterministic sinusoidal reference inputs provides an accurate estimate of the

system transmission function only when the quadrature phase error between the real and
imaginary components of the reference input is maintained within some tight limit over the

analysis bandwidth of interest. In those situations where we may apply only real input

signals, so that the real and imaginary components must be applied separately, this

requirement may place a severe limitation on the design of the reference signal generator.

In contrast, the use of non-deterninistic input signals for characterization of LPTV systems

may proceed by applying independent real and imaginary input signal components to the

system of interest. The design of the reference signal generator is therefore greatly

simplified.

In conclusion, the characterization of discrete-time LPTV systems using

deterministic signals is appropriate in those situations where a fiae estimate of the system

transmission function is required at a particular frequency, or across some relatively narrow

band of frequencies. The use of non-deterministic signals for LPTV system

characterization is appropriate in those situations where an estimate of the system

transmission function is required over a broad range of frequencies, or where the direct

application of a reference sinusoid would be impractical.
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